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Summary

A numerical regression method, asslisted by a least
squares technique, is proposed to obtaln thermodynamic
and hydrodynamic parameters of polymer molecules via a
direct comparison between experimental data and theorg
tical functions. Thls comparlison is independent of the
number of the experimental varlables. The method also
enables to declde if a selected set of theoretical equa
tions fits satisfactorily the experimental results.

Introduction

The themodynemic and hydrodynemic treatment of ma
cromolecular solutions is a very active fleld of Inves
tigation, When attention 1s directed to very dilute so
lutions of random colled linear polymer molecules a lot
of experimental results (molescular weight, radius of gy
ration, second virial coefficlent, intrinsic viscosity,
etc.) are avallable to be analyzed by means of different
theoretical approaches which have the same underlying
purposse: to describe equilibrium and transport solution
properties in terms of polymer-solvent and polymer-poly
mer interaction parameters. To obtain these parameters
ons has to take sufficient experimental values (which
may be measured with different reliabllity) of a number
of variables which are connected to each other by differ
ent systems of equations (explicitly or not) and decilde
which of these systems, 1f eny, give a satisfactory rfit
to the experimental results.

It 1s well known that dilute polymer solution theg
ry has to account not only for the interaction between
its constituents as any other solution theory but also
for the average dimenslons of the macromolecules in so-
lution. Thls feature leads to the so called two parame
ter theory (YAMAKAWA, 1971). The manipulation of the
experimentel data to show how the different theoretical
approaches work has to meet therefore the simultansous
verliflication of both the thermodyneamic and transport
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aspects , based on the sltuation that there are enough
experimental data approprilately distributed in the mea
sured molecular welght range.

To this end several procedures were proposed in the
literature: for example to group some experimental re-
sults to make a comparison with the theoretical functlons
possible (YAMAKAWA, 1968); to linearize these functions
allowing an easy grphlcal analysis (NORISUYE et al.,
1968; BYRRY, 1966); to use graphical methods based on
empirical laws (GLOCKNER, 1980); etc. All thesse methods
have to clreumvent the difficulty which prevents a di-
rect comparlson between measurements and theory. Gene-
rally they are bounded to some requisites which depend
on the particular mathematical form of the equations usad.

Here we propose & numerical method (Gauss' method,
BARD, 1974) by which this direct comparison is possible
without necessity of any change in the theoretlcal equa
tions or use of any additional relationship and by simul
teneous use of all experimental results.

Outlines of the method

Let us assume that for a solutlion of a linear poly
mer the gxﬁgimental values of the radius of gyration
Rg,es(Rg?)1/ %, the second virial coefficient AZ2,e and the
intrinsic viscosity [l,e are known as a funotion of the
molecular welght M. Within the freame of the two parsme-
teor model theory calculated values Rg,c , A2,¢c and [j],c
may be derived from the following structural equations:

Rg,c = R(KO ,B,M)
A2,¢c = A(Ko,BM) (1)
[n]’ ¢ = E(Ko,B,Po sM)

where K03,<Rg%/M and B=g/ms® are the two parameters to
be determined. do is Flory's véscosity constant which we
take as a third parameter, {Rg)o s the square of the
unperturbed radius of gyration, and f is the binary eclug
ter integral of interaction between chain segments of
molecular weight ms. The explicit form of eqs.(l) depend
on each theory but are always non linear.

With initial assumed values of the parameters Ko,
B and ¥o we may calculate Rg,ci , A2,ci and fj,ci for
each molecular weight Mji with the help of eqs.tl « The
Gauss method considers that the dlfferences between the
experimental and calculated values of Rg, A2 and [] arise
from the errors (6Ko, 6B and 6®o) in the assumed values
of the three paremeters.

According to a one term Taylor development the re-
lations between the above differences and the parameter
errors are given by
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ARi = 3 )15K° + 7B‘)153

Aar = 22) sx0 94\ s 2
1 aKo)i + aB)i (2]

Ax, = %EB) 5 9E\ 5B 98 \ss0
1 aKo)l aB)i + arbo)i

Eqs.(2) provide the new values of the parameters
(Ko+ BKo, B+ 8B, 0 + 840}, With these a new set of cal
culated values (Rg, » A2,c and[N],c) are obtained through
egs.{1l) and the procedure repeated until the parameter
values show no significant change.

Actually there are N sets of experimental values
and n parameters (here n=3) to be determined (Nyn).
Therefore it is necessary to use a regression method
agsisted by a least squares technique. In other words
we try to minimize the sum of the squares of the differen
ces given by eqs.(2). Such a sum has an unsatisfactory
property because we add rather different entities. To
solve this problem it is only necessary to minimize the
sum of the squares of the relative differences, i.e.:

5=, l{hR(Rg,e-&, ) hA_(Az,ez-’gézc) (m ), & -lglzc) }(3)

where hgr, hi and hg are numerical coefficlents which in
a relative scale, allow to correct in case that sonme
kind of measurement (say a) may be experimentally more
reliable than other (say b) by putting ha  hb.

Using the abbreviations Fc=R,A OJE' ? with k=1,..,L
= Ko, ordo, with j=1,,..,n; 3) may be written
itl a very general way,

L 2
s—.-}; 3 hk<§Fk> (4)
i=1 k=1 k,e

(L is the number of measured dependent variables), the
condition for a minimum being n equations of the I‘orm

3s N AFk) aFk)
0=~ -2 hk =) 5. (5)
£ 1§1 k§1 ileft ¥/

Introducing egs.(2) in (5)

N L AF, \ OF N L oF o F
Y m—t ) =)= ¥ )= T 2 53 (6)
B, R OP 5 F oP aP,

i=1 k=1 k,e’y 1 i=1 k=1 k,e J71 121 9§

(f21,.4,],eyn). The n eqs.(6) allow to calculate the n

values 6B with which a new set of parameters (By+38E )

are calculated to make a new lteration step as outlined
befors.

For a specific application see the Appendix.
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Application to some experimental results.

We applied the method to data from several polymer-
solvent systems found in the literature and compared the
values of the parameters Ko and §o to those measured ex-
perimentelly under theta condltions. Only self-consistent
combinatlions of equations for the expansion factor & and
the interpenetration function % h(Z) were used (YAMAKAWA,
1971; GLOCKNER, 1980). For each variable we also calcula
ted the standard error of estimate

I 2 ,1/2
sty =]t (M) } (7)
N {=) Pe,e /1

which can be compared to the mean experimental relative
error erel with which Fyx g was measured. S'k {erel means
that the theoretical curve fits appropriately to the ex-
perimental values. See table I.

In table I it is seen that for some Systems the va-
lues of the parameters obtained agree with those deter-
mined experlmentally but for others a somewhat too high
difference 1s found. This is probably because the theo-
ries are not valld for high values of the excluded vo-
lume parameter z.

As an example We plotted in rfig. I ﬁﬂ,e , A2,e and

Rg,e against the molecular welght M of very high molscu-
lar welght Polystyrene in benzene (MIYAKI et al., 1978;
TINAGA ot al., 1979), together with thelr experimental
errors and the theoretical curves that best fltted the
xperimental data. A quite good adjustment is found for
ﬁnfand Rg but for A2 a clear blas between theoretical
curve and experimental values is found. This differences
do not dissappear by use of reasonable values for the
statistical weights hk. This means that the theoretical
equations are incapable to describe appropriately the
A2 - M relationship.

We also applied this method but taking only Rg and
A2 values., The parameters Ko and B calculated were simi-
lar to those obtalned by GLOCKNER (1980) by use of his
graphical procedurs.

Naturally the method may be extended so as to em-
brace any other experimental variable adequately des-
eribed by theory (for exemple the diffusion and sedi=-
mentation coefficients, sete.).
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FIGURE I.- Intrinsic viscosity, second virial coefficient,
radius of gyration of Polystvrene in benzene
and the theoretical curves that best fit the
experimental data,

Appendix
By use of vectorial notatlon and introducing the
approximation

Fk ~ 1n Fk,e (A1)
jk,e Fk,c
the n eas. (6) may be written
— =

where

|

6Pj]
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N L
-"'JZ 5 hg m(Fk,e O1n Fk) 1 (3)
li=1 k=1 Fi,c dPj 1]

and & 1s an x n matrix whose elements are

> N L
-Q'-'S E E hk aln Fk) aln Fk) lz:l,.-,j,o.,n
(=11 OP; /3 0% /i

As an example we take Flory-Krigbaum-Orofino (FKO)
self consistent system of equations for the expansion

factor X and the interpenetration function z hi(Z) (YAMA
KAWA, 1971)

oK° -%=0 2

Z n(z) _ n(l4c'z)
= —

and a first term perturbative serles for the viscosity

expansion factor (YAMAKAWA and TANAKA, 1967)

(Aq)

where z 1s the well known gxcl ded volume parameter de-
fined by z=(47)~%/2B Ko~ M1/2 and 7 = z/x5.- (A8)

Given the following relationships (YAMAKAWA, 1971)
{re®) = 2(re2o
A2 =B._1§.a h(z) (A7)
3
[1] =[nle op=6%2 0 xo° o(; y/2

we derive

Rg,c = Ko MY 2(1 4 ¢ 3)Y/2
A2,c = B Na ln;lc"r ;’z) (A8)
Mle = 6%/2§0 Ko(1 + oqz) MY 2

and the following derivative gquations:

alnR__:'l_.[l_ 5c‘z] dnR_1[ c%Z ]
dKo ~ Ko 245 ¢ 2 OB " Bl|l2+5¢ %

dln A: 3(1+c z) [1 . 1 ]
O0Ko Kko(l+2.5 ¢ Z) h(z) (1 4 ¢'Z)
Oln A _ 1 l+cz 3¢z
3B B(1+ 2.5 0 ‘z)[ B(Z)(1+ ¢'Z) 2 ] (o)
An R _ @ln A _ dln B_ 1

= =0 S —_—
ado %o 2o @o

dln E_ (-a)l:l+ clz] ln 1:_~_1_[ 0,2 ]
Z

0Ko Ko 1+ ey 9B  Bll4cqz
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